Rifle Toss:

Being on North’s Color Guard, I've come to notice that people’s favorite piece
of equipment to watch be used is the rifle. Specifically, people like to watch me toss
rifle because as a male, [ have much more muscle mass than your typical girls that
populate color guard teams which allows me to perform tosses that far exceed the
abilities of my teammates. (It’s just a fact, I'm not being arrogant or anything, I
promise) While watching a guy throw a wood rifle over 3 meters up into the air is
amazing to watch, how much energy must a person be able to put out in order to
perform one of these tosses?

Key Values to Know-
Toss Rotations: 8 tross = 5.23s
Height of the toss: 3.6 meters T = 1.4867 sec/osc
Mass of the rifle: 1.076 Kg

Assumptions-
Negligible air resistance
Negligible friction for contact with hands

Intro:

Before starting, tossing a guard rifle is by no means as simple as it may
appear to be through this project. It does take practice get tosses correct. In this
experiment, the total is a combination of that exerted by both hands since it’s very
difficult to toss a rifle with just one hand. I treated it as though a single contact, one
hand, was used to input the energy into my rifle system.

Energy Analysis-

Looking at the system for the rifle, it's not very complex. At the start of the toss, the
rifle has no energy except the small amount of gravitational potential energy being
about a meter off the ground. Energy is first put into the system when [ push down
on the butt of the rifle, supplying the needed energy for the rotation. Secondly, my
hand along the neck of the rifle pulls up, inputting the kinetic energy needed to
achieve the required height which is converted into potential at its peak height.
Since we are assuming that we have a perfect system, all of the kinetic should
eventually be converted into potential.

Here’s where the fun begins!

So from this, you can find the total energy of the system at the peak of the toss...

1
Total Energy = Mgh + Elwz

If you're wondering what that new equation at the back half is, here’s your answer.
We already learned about what regular kinetic and potential energy are, but now



you get to learn about a new one, which is Rotational Kinetic Energy. This,
obviously, applies only when an object is undergoing rotation within its system.
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KErotational - Elcmw

I: Moment of Inertia, w: Angular Velocity

Angular velocity:
w = 2nf
f: frequency of the toss = 1.5296 rev/sec

w = 2m(1.5296)
w = 9.6107 rad/sec

As some of you may know, Mr. Schmit and I spent a couple days attempting different
experiments to solve for the second half of the Rotational Energy equation. The
problem with my rifle was that it isn’t a uniformly distributed object with reference
to its mass, but finally an accurate solution was found. By creating a pendulum from
the rifle, you can solve for any object’'s Moment of Inertia

Parallel Axis Theorem:

L, =1, + Mh?

bp

I,p : Moment of Inertia at the Pivot Point, I.,: Moment of Inertia at the Center of
Mass, M: mass, h: distance from pivot point

But don’t worry; this isn’t the actual form of the equation wanted. Taking this
equation, it is later on derived into another one that better suits the needs for this
experiment by matching it with SHM (Simple Harmonic Motion).

I,y + Mh?
Mgh
[.m: Moment of Inertia at the Center of Mass, M: mass, h: distance from pivot point,

T: Period of the object, g: acceleration due to gravity
Period of a Pendulum:

T =27

T =21 |[—
g

L: length of pendulum, g: acceleration due to gravity

Solving for I, you get



( ) Mgh — M(h)?

1.4867\2
lem = < 2T

) (1.076kg) ( ) (.341m) — 1.076kg (. 341m)?
Iem .076 kgm?

Now with the two missing variables found, finding the total energy put into the
system is easy.
1 2
Total Energy = Mg#h + > [omw

m 1
Total Energy = 1.076kg (9.8 5_2) 3.614m + 3 (.076 kgm?)(9.6107 rad /sec) ?

Total Energy = 38.11] + 3.518 ]
Total Energy = 41.627 ]

So I expend about 42 Joules of energy each time I toss an 8, not too shabby.

But wait! Let’s say that you were to try tossing this each of the planets in the solar
system, how much energy would be required?

A Trans-Celestial Performance:

To figure the energy needed to toss on each of the planets, the only change that
would need to be made is the acceleration due to gravity in the past equations,
which can be found for any two masses with Newton’s Law of Gravitation.

MRifleMplanet

FGravity =G 72
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G: Universal Gravitational Constant (6.67 x 10711 Ni), M: mass of an object or planet,
kg?

r: radius from center of planet to object
Then Force of gravity equation, you can solve for the acceleration due to gravity.

Fgravity = Mg

M: mass of the object, g: acceleration due to gravity

Planet Mass (kg) Radius (m)
Mercury 330x 10™23 2,440,000

Venus 4.87 x 10724 6,051,000



Earth 597 x 10724 6,378,000

Moon 7.35x 10722 1,738,000

Mars 6.42 x 10723 3,397,000
Jupiter 1.90 x 10727 71,492,000
Saturn 5.69 x 10726 60,268,000
Uranus 8.66 x 10725 25,559,000
Neptune 1.03 x 1026 247764 ,000

Pluto 1.31x 1022 1,160,000

And other favorite solar bodies

Sun 1.989x 10730 695,500,000
M87 Black Hole 1.19x 10740 1.93x 10713
Neutron Star 6.365x 10730 12,000

After the calculations, the acceleration values are as follow...

Solar BOdy Agravity (m/SZ)
Mercury 3.61

Venus 8.83

Earth 9.8

Moon 1.6

Mars 3.75

Jupiter 26

Saturn 11.2

Uranus 10.5
Neptune 13.3

Pluto .65

Sun 27413

M87 Black Hole 2130.87
Neutron Star 294 x 10712

Substitute these in place of Earth’s gravitational acceleration in the equations from
Energy, Period of a Pendulum, and Parallel Axis Theorem to adjust for the new
gravity and VOILA, you have your required energy outputs for the toss!



But I don’t think you really want to read through all of them so here are the final
results.

Solar Body Total Energyyisie toss (J)
Mercury 21.06

Venus 41.408

Earth 41.627

Moon 13.286

Mars 21.65

Jupiter 108.065

Saturn 50.58

Uranus 47.86

Neptune 58.73

Pluto 17.86

Sun 1071.89

M87 Black Hole 8952.39

Neutron Star 1.14200437 x 1013

That Neutron Star:

Let’s take another look at our buddy, Neutron Star. What this value
means is that it takes a person over 11 trillion Joules of energy to toss
an eight-rotation toss. Written out, that’s 11,420,043,700,000 Joules. So
one essentially needs explode approximately one kiloton of TNT or a
mini nuclear fusion bomb and covert all of that energy from the
explosion directly into mechanical energy input for this toss.

That energy is the equivalent to eating any of the following:

28,700,000,000 apples
25,900,000,000 bananas
2,720,000,000 watermelons
13,990,000,000 Chocolate Donuts
4,960,000,000 Big Macs
14,300,000,000 McNuggets
5,450,000,000 Large Fries

YVVVVVYVYY

Now, the last question that must be posed is how many rotations would a
toss of that energy on Earth be because why wouldn’t you want to know. So, let’s
start working backwards.




Total Energy = 1.14200437 x 1013

1
1.14200437 x 103 = Mgh + Elwz

Since a toss of this magnitude surely would want a greater height to show off to the
audience, the height will change to 13 meters, which is about the height of a football
goal post. Gravity and Moment of Inertia will change back to Earth’s values, and it
will be assumed that the toss takes the same amount of time, 5.23 seconds.

m 1
1.14200437 x 103 = 1.076 kg (9.85—2) 24m + - (15314 kgm*)w?®

rad
w = 19,309,657.19—
sec

w = 2nf

rev
f =3,073,227.391 —
sec

Taking this time value, multiply the revolution of the toss per second by this time to
get the total rotations from the initial energy input.

x revolutions

3'073,227391 = 523 Seconds

Total Toss Revolutions = 16,072,979 rotations
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